skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Friedlaender, AS"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The innovation of new foraging strategies allows species to optimize their foraging in response to changing conditions. Humpback whales provide a good study species for this concept, as they utilize multiple novel foraging tactics across populations in diverse environments. Bubble-net feeding (BNF), commonly seen in the Northern Hemisphere, has emerged as a foraging innovation in the past 20 yr within the Western Antarctic Peninsula. Using sightings data from 2015-2023, we found that BNF was present in every study year, with an annual average of 30% of foraging sightings. This data was supplemented with 26 animal-born tags deployed over the same study period. Of these tags, 12 detected instances of BNF, with BNF making up an average of 19% of the foraging lunges detected. There were seasonal trends in BNF sightings, as it was observed significantly more often at the beginning of the feeding season (January) before declining. BNF group sizes (mean: 3.41) were significantly larger than non-BNF surface feeding groups (mean: 2.21). This observation is consistent with BNF in the Northern Hemisphere, which also appears to primarily be a group foraging strategy. The seasonal pattern and relatively recent emergence of BNF suggests that its use is likely tied to specific environmental conditions, which should be investigated by comparing BNF with variables such as prey density and light availability. The social transmission of novel foraging strategies across other populations further suggests that the prevalence of this strategy likely occurs through social learning. 
    more » « less
  2. Increasingly, drone-based photogrammetry has been used to measure size and body condition changes in marine megafauna. A broad range of platforms, sensors, and altimeters are being applied for these purposes, but there is no unified way to predict photogrammetric uncertainty across this methodological spectrum. As such, it is difficult to make robust comparisons across studies, disrupting collaborations amongst researchers using platforms with varying levels of measurement accuracy. Here we built off previous studies quantifying uncertainty and used an experimental approach to train a Bayesian statistical model using a known-sized object floating at the water’s surface to quantify how measurement error scales with altitude for several different drones equipped with different cameras, focal length lenses, and altimeters. We then applied the fitted model to predict the length distributions and estimate age classes of unknown-sized humpback whales Megaptera novaeangliae , as well as to predict the population-level morphological relationship between rostrum to blowhole distance and total body length of Antarctic minke whales Balaenoptera bonaerensis . This statistical framework jointly estimates errors from altitude and length measurements from multiple observations and accounts for altitudes measured with both barometers and laser altimeters while incorporating errors specific to each. This Bayesian model outputs a posterior predictive distribution of measurement uncertainty around length measurements and allows for the construction of highest posterior density intervals to define measurement uncertainty, which allows one to make probabilistic statements and stronger inferences pertaining to morphometric features critical for understanding life history patterns and potential impacts from anthropogenically altered habitats. 
    more » « less
  3. Understanding how closely related, sympatric species distribute themselves relative to their environment is critical to understanding ecosystem structure and function and predicting effects of environmental variation. The Antarctic Peninsula supports high densities of krill and krill consumers; however, the region is warming rapidly, with unknown consequences. Humpback whales Megaptera novaeangliae and Antarctic minke whales Balaenoptera bonaerensis are the largest krill consumers here, yet key data gaps remain about their distribution, behavior, and interactions and how these will be impacted by changing conditions. Using satellite telemetry and novel spatial point-process modeling techniques, we quantified habitat use of each species relative to dynamic environmental variables and determined overlap in core habitat areas during summer months when sea ice is at a minimum. We found that humpback whales ranged broadly over continental shelf waters, utilizing nearshore bays, while minke whales restricted their movements to sheltered bays and areas where ice is present. This presents a scenario where minke whale core habitat overlaps substantially with the broader home ranges of humpback whales. While there is no indication that prey is limiting in this ecosystem, increased overlap between these species may arise as climate-driven changes that affect the extent, timing, and duration of seasonal sea ice decrease the amount of preferred foraging habitat for minke whales while concurrently increasing it for humpback whales. Our results provide the first quantitative assessment of behaviorally based habitat use and sympatry between these 2 krill consumers and offers insight into the potential effects of a rapidly changing environment on the structure and function of a polar ecosystem. 
    more » « less